快速发布求购| | | | | 加微群|
关注我们
本站客户服务

线上客服更便捷

仪表网官微

扫一扫关注我们

|
客户端
仪表APP

安卓版

仪表手机版

手机访问更快捷

仪表小程序

更多流量 更易传播


您现在的位置:仪表网>分析检测>资讯列表>阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练

阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练

2024年05月24日 15:48:57 人气: 21242 来源: 智能化网智荐头条
  【仪表网 产品快讯】近日,阿里云人工智能平台PAI正式发布自研的DeepRec Extension(即 DeepRec 扩展),旨在以更低成本,更高效率进行稀疏模型的分布式训练。DeepRec Extension 在 DeepRec 训练推理框架之上,围绕大规模稀疏模型分布式训练,创新性地从训练任务的视角提出了自动弹性训练和分布式容错功能,进一步提升稀疏模型训练的整体效率,助力 DeepRec 引擎在稀疏场景中发挥更大的优势。
 
  DeepRec Extension 有效地解决了企业级场景大规模稀疏模型训练中的难点。随着业务发展,模型尺寸增长到百 GB / TB 量级,分布式训练往往会遇到分布式建模接口复杂、资源预估困难且无法弹性、分布式容错机制过于简单和分布式环境复杂等问题,阻碍大尺寸模型高效、稳定地完成训练。DeepRec Extension 提供易用、高效、高性价比的框架,使得模型能够便捷地在分布式环境中运行,切实解决上述问题
 
  
 
DeepRec Extension 设计思路及整体架构
 
  DeepRec Extension 推出分布式训练资源预估、自动弹性训练、资源/计算图监控、自动备份容错等功能,有效降低了大规模稀疏模型训练的技术门槛和成本,同时提升了分布式训练的效率和稳定性。DeepRec Extension 简化分布式训练的工作流程,保障用户聚焦于模型的构建阶段,更加专注于模型本身的创新与优化,无需关注繁琐的底层架构配置。在性能提升方面,资源预估以及自动弹性训练为用户节约 20% ~ 60% 资源,在稳定性方面,PS 发生异常后,模型 E2E 训练吞吐提升 10%。
 
  一直以来,大规模稀疏模型分布式训练是备受关注的话题,阿里云人工智能平台PAI正式将 DeepRec Extension 开源,与AI开发者共同打造更快更好的分布式训练框架,全面助力AI大模型发展!
关键词: 人工智能
全年征稿/资讯合作 联系邮箱:ybzhan@vip.qq.com
版权与免责声明
1、凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
2、本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
3、如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
4、合作、投稿、转载授权等相关事宜,请联系本网。

企业推荐

更多
联系我们

客服热线: 0571-87759942

加盟热线: 0571-87756399

媒体合作: 0571-87759945

投诉热线: 0571-87759942

关注我们
  • 下载仪表站APP

  • Ybzhan手机版

  • Ybzhan公众号

  • Ybzhan小程序